Skip Navigation
Skip to contents

Res Vestib Sci : Research in Vestibular Science

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Issue > Author index
Search
Jae Hee Lee 5 Articles
Role of the Peripheral Vestibular End Organ in the Expression of c-Fos Protein in the Medial Vestibular Nucleus Following Occlusion of the Anterior Inferior Cerebellar Artery
Nari Kim, Jae Hee Lee, Myoung Ae Choi, Byung Geon Park, Min Sun Kim, Byung Rim Park
Res Vestib Sci. 2012;11(2):51-58.
  • 1,747 View
  • 12 Download
AbstractAbstract PDF
Background and Objectives: The present study investigated the role of the peripheral vestibular end organ in vestibular symptoms and temporal changes in expression of c-Fos protein in the vestibular nuclei following anterior inferior cerebellar artery (AICA) occlusion using rats with unilateral or bilateral labyrinthectomy. Materials and Methods: Expression of c-Fos protein in the vestibular nuclei was measured 2, 12, 24, and 48 hours after AICA occlusion. Results: Unilateral AICA occlusion significantly induced expression of c-Fos protein bilaterally in the medial, inferior, superior, and lateral vestibular nuclei. Following AICA occlusion, the medial vestibular nucleus (MVN) showed the highest expression of c-Fos protein among the 4 vestibular nuclei. The expression of c-Fos protein was asymmetric between the bilateral MVN, showing higher expression in the MVN contralateral to the side of AICA occlusion compared to the ipsilateral MVN. The degree of asymmetry in c-Fos protein expression between the bilateral MVN peaked 12 hours after AICA occlusion. The expression of c-Fos protein gradually decreased 24 hours after AICA occlusion and returned to control levels 48 hours after AICA occlusion. Unilateral labyrinthectomy significantly decreased expression of c-Fos protein in the MVN ipsilateral to the side of labyrinthectomy following AICA occlusion. Moreover, bilateral labyrinthectomy significantly decreased expression of c-Fos protein in the bilateral MVN flowing AICA occlusion. Conclusion: These results suggest that afferent signals from the peripheral vestibular end organ are crucial to the expression of c-Fos protein in the MVN following AICA occlusion and that expression of c-Fos protein is sustained for 24 hours after AICA occlusion.
Understanding of Structure and Function of Vestibular Cortex
Min Sun Kim, Jae Hee Lee, Gyoung Wan Lee, Byung Rim Park
Res Vestib Sci. 2010;9(1):1-11.
  • 1,926 View
  • 56 Download
AbstractAbstract PDF
The vestibular end-organs generate very sophisticated gravity sensory information about head movement by sensing head acceleration in three-dimensional space. Vestibular information is crucial for higher brain functions such as cognition of spatial orientation, spatial memory, and perception of self-motion. The term “vestibular cortex” represents cortical area where vestibular information is processed, converged with other sensory inputs to maintain cortical functions. The vestibular cortex gives rise to commend signals that control the vestibulosomatic reflex through the modulation of vestibular nuclear activity in the brainstem. The vestibular cortex includes such different cortical regions as the premotor region of the frontal cortex, parietal areas, temporal areas, and a central core region called parietoinsular vestibular cortex. This paper summarizes systemically animal and clinical research data concerned with the vestibular cortex in order to understand anatomy and functions of the vestibular cortex and to provide a basic literature for further study.
Changes in the Gastrointestinal Motility following Unilateral Labyrinthectomy
Jae Hee Lee, Gyoung Wan Lee, Suck Jun Choi, Eun Ho Park
Res Vestib Sci. 2009;8(1):15-22.
  • 1,865 View
  • 18 Download
AbstractAbstract PDF
Background and Objectives The temporal changes and the role of glutamate receptors in the recovery of vestibulogastrointestinal symptoms following unilateral labyrinthectomy (UL) were investigated in this study. Vestibulogastrointestinal symptoms were evaluated in terms of gastric emptying and intestinal transit. Materials and Methods Expression of the c-Fos protein was observed in the solitary tract nucleus (STN) and rostral ventrolateral medullary nucleus (RVLM). These were measured at 0.5, 2, 6 and 24 h following UL in rats. Results Gastric emptying and intestinal transit were significantly decreased for 6 h post UL and recovered to control levels within 24 h. Pretreatment of UL animals with MK-801 significantly increased the gastric emptying and intestinal transit. Bilateral labyrinthectomy significantly decreased the gastric emptying and intestinal transit compared to the intact labyrinthine animals but significantly increased when compared to UL animals. The expression of c-Fos protein was significantly increased in STN and RVLM compared to the control animals for 6 h post UL and recovered to control levels within 24 h. The expression was significantly decreased in animals that were pretreated with MK-801. Conclusion These results suggest that UL decreases the gastrointestinal motility, which recovers to control levels within 24 h post UL. Glutamate plays an important role in the recovery of vestibulogastrointestinal symptoms following UL. Key Words: Gastric emptying; c-Fos protein; Glutamate; Gastrointestinal Motility; Unilateral labyrinthectomy
Expression of Glutamate Receptors in the Medial Vestibular Nuclei following Acute Hypotension
Jae Hee Lee, Myoung Ae Choi, Dong Ok Choi, Bo Kyoung Kim, Seok Min Hong, Byung Rim Park
J Korean Bal Soc. 2007;6(1):29-35.
  • 1,577 View
  • 6 Download
AbstractAbstract PDF
Acute hypotension induced excitation of electrical activities and expression of c-Fos protein and pERK in the vestibular nuclei. In this study, to investigate the excitatory signaling pathway in the vestibular nuclei following acute hypotension, expression of NR2A and NR2B subunits of glutamate NMDA receptor and GluR1 subunit of glutamate AMPA receptor was determined by RT-PCR and Western blotting in the medial vestibular nucleus 30 min after acute hypotension in rats. Acute hypotension increased expression of NR2A, NR2B, and pGluR1 in the medial vestibular nuclei. These results suggest that both of NMDA and AMPA glutamate receptors take part in transmission of excitatory afferent signals following acute hypotension.
Role of the Peripheral Vestibular System on Neuroplasticity Induced by Hypergravity Stimulation
Jae Hyo Lee, Gyoung Wan Lee, Han Su Park, Jae Hee Lee, Dong Ok Choi, Myoung Ae Choi, Byung Rim Park
J Korean Bal Soc. 2006;5(2):213-223.
  • 1,803 View
  • 15 Download
AbstractAbstract PDF
Background
and Objectives: Altered environmental gravity, including both hypo- and hypergravity, may result in space adaptation syndrome. To explore the characteristics of this adaptive plasticity, the expression of immediate early gene c-fos mRNA in the vestibular system following an exposure to hypergravity stimulus was determined in rats. Materials and Method: The animals were subjected to 2 G force (two-fold earth's gravity) stimulus for 3 hours, and were examined at post-stimulus hours 0, 2, 6, 12, and 24. Real time reverse transcription-polymerase chain reaction (RT-PCR) was adopted to analyze temporal changes in the expression of c-fos mRNA.
Results
The hypergravity stimulation produced the expression of c-fos mRNA in the vestibular ganglion, medial vestibular nucleus, inferior vestibular nucleus, hippocampus, vestibulocerebellum, and vestibular cortex. The peak expression occurred at hour 6 in the animals hypergravity-stimulated for 3 hours. Bilateral labyrinthectomy significantly attenuated the degree of up-regulation in c-fos mRNA expression. MK-801, an NMDA receptor antagonist, also significantly attenuated the degree of up-regulation in c-fos mRNA expression.
Conclusion
These results indicate that the adaptive neuroplasticity in response to an altered gravity occurs in the vestibular-related organs in the central nervous system, in which peripheral vestibular receptors and NMDA receptors play an important role. Key Words : Hypergravity, Neuronal plasticity, Vestibule, c-fos gene

Res Vestib Sci : Research in Vestibular Science